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ABSTRACT 

The aim of this paper is to derive, the exact analytical expression for estimation of Parameters of Pareto 

distribution, using entropy loss functions. Our purpose is to obtain, bias estimator and the associated risk function of 

different types of loss function, namely SELF absolute loss function, Linex loss function, Precautionary Loss function and 

entropy loss function. The purpose is to find out the most suitable loss function, amongst these five loss functions. In this 

paper, parameters of Pareto distribution have been estimated, by using the method of moments. The workability of the 

estimator is then compared, on the basis of their risks obtained under different loss functions. The relative efficiency of the 

estimator is also obtained. In the end, Monte-Carlo simulation has been performed, to compare performances of the bias 

estimates, under different situations. 
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4.1. INTRODUCTION 

Pareto distribution was applied by Pareto, to model the allocation of wealth among individuals and the distribution 

of incomes. It has been widely used in economics, insurance, geography, clusters of a Bose Einstein condensate near 

absolute zero, physical sciences, chemical sciences. Asrabadi (2015), established the UMVUEs, for the PDF and 

cumulative distribution function (CDF) of Pareto distribution. Asrabadi et. al (2015), further studied the MSE of MLEs and 

UMVUEs, of PDF and CDF. 

The applications of entropy, originated in the nineteenth century, in the field of Statistical Mechanics and 

Thermodynamics. In this chapter, we have derived analytical expressions, for estimation of Parameters of Pareto 

distribution, using entropy loss function and also have obtained bias of the estimator and the associated risk function, for 

other different types of loss functions, namely SELF, Absolute loss function, Linex loss function and Precautionary Loss 

function. The objective is to find out the most suitable loss function, amongst these five loss functions. In this chapter, 

parameters of Pareto distribution have also been estimated. In this chapter, the entropy expression for Pareto (II) 

distribution is derived. The workability of the estimator is then compared, on the basis of their risks, obtained under 

different loss functions. These distributions have important roles, as parametric models in reliability, actuarial science, 

economics, finance and telecommunications. Analytical expressions, for the entropy of bivariate distributions are 

discussed, in references like Hui He (2014), G.H Yari (2010).  

The random variable X is said to have two Parameter Pareto distributions, if its density function is given by, 

.����� = �
� 	
��

���
 

	= �������	; 	� >β> 0, α > 0  
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The Shannon measure of entropy of ����� is 
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As an equation (4.1.1) has Integrals with improper integral limits, we introduce ‘t’ to solve this improper integral 
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α
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Thus, it can be seen that, the entropy is a function of both the parameters α as well as β. Further, it can be seen 

that, smaller the value of α, larger will be entropy. So, it is true about dispersion.  

4.2. ESTIMATION OF ENTROPY OF PARETO DISTRIBUTION 

In a random sample, there would always be an infinite number of functions of sample values, called statistics, 

which may be proposed as estimates of one or more of the parameters. The best estimate is one that falls nearest to the true 

value of the parameter to be estimated. The estimating functions are then referred to as estimators.  

In estimation theory, we are concerned with the properties of estimators and methods of estimation. The merits of 

an estimator are judged, by the properties of the distribution of estimates, obtained through estimators. 

The problem of estimating of entropy reduces to problems of estimating of parameters �	����. Commonly used 

methods of estimation are:- 

• Method of Maximum Likelihood Estimation 

• Method of Minimum Variance 

• Method of Moments (MOM) 

• Method of Least Squares 

• Method of Minimum Chi- Square 

• Method of Inverse Probability 

As it involves two parameters, both cannot be estimated together, through MLE. So, a different approach and 

methods adopted can be discussed. 

Karmeshu (2003), gave the estimates of parameters, using MOM as �̅ 

.�� = 1 + 	1 + 
���� �

!.#
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̅����
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Where, �̅ and cv are mean and coefficient of variation, defined as  

.�̅ = 
%∑ �'%'(  

.�̅ =
��
�� 

.)* = +

̅ = 

,����-�./.0 

where	1- = 
%�∑ ��' − �̅�-%'(  

and n is the number of observation. 

But, as simultaneous estimation is not possible. So, we consider three cases 

i) When α  is known, β  Unknown  

ii) When β  is known, α  Unknown 

iii) When α  and β  both are unknown 

CASE I 

Under the SELF, the problem of estimating H ( β ) is equivalent to that of estimating log β  when α  is 

assumed to be known, that is α = 0α (say) 

Let 34 is the estimator of entropy of pareto distribution. Let 3= logβ 

then	34 = 3 + 5 where 5 = 
�/ − 6��! + 1 

Now, we will estimate the log β using SELF 

Estimation of log β  under SELF is defined as  

.7�3, logβ� = �3 − logβ�- 

Risk function of an estimator 3of log β  will be denoted by 

And R(3, =)= >?,7�3, 6@A��. where Q = (α, β) 

But, in this case α =�! (Known) is assumed to be known. 

Next, we find the Risk function and a bias function of the corresponding estimator 

δC = δ − lnα! + 
F/ + 1                                                                                                                                     (2.1) 

.34 = 3 + 5 

and the estimate of entropy ���� are derived as below 

.G4H34 , ����I = >?J7�34, �����K- 
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.= >?J34 − ����K- 

.= >?,3 + 5 − L6�� + )M.-	where	) = 
� − 6@A� + 1 

.= >?,3 + 5 − 6�� − ).- 

.= >?,3 − 6��.- 

.= >?H7�3, 6���I 
Ignoring the constant term [� = �!], we get 

.G4 	34 , ����� = G�3, =�                                                                                                                                  (2.2) 

.N4H34 , ����I = >?J34, ����K 

.=>?,3 + 5 − L6�� + )M. 
=>?,3 + 5 − 6�� − ). 
=>?,3 − 6��. 
N4H34 , ����I = N�3, =�                                                                                                                                    (2.3) 

Next, we compute the risk function for Absolute Loss function. 

Absoluteloss function is given by  

L�θ, d� = c|d − γ�θ�|  
Where, again c�θ� > 0 but independent of θ. 

For Absolute Loss function, the Risk function is 

.G4H34 , ����I = >?J7�34, �����K 

.G4H34 , ����I = >?JV34 , ����VK 

.= >?,|3 + 5 − L6�� + )M|. 

.= >?,|3 + 5 − 6�� − )|. 

.= >?,|3 − 6��|. 

.= >?H7�3, 6���I 

.G4H34 , ����I = G�3, =�                                                                                                                                   (2.4) 

Basu and Ebrahimi (1991) Considered the Linex (Linear exponential) loss function  

.7�∆� = X,YZ∆ − �∆ − 1., � ≠ X > 0 

Where, ∆= ?\
? − 1 and =\  is the estimator of Q. 
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Thus, Linexloss function is almost symmetric and not too different from a Squared error loss function. 

For Linex Loss function the risk function is 

.G4H34 , ����I = >?J7�34, �����K 

.G4H34 , ����I = >? ]X ^YZ^_`a�b���c − �d34 − ����e − 1cf, where� is a constant,	� ≠ 0 

.= >?JXdYZL_`gh��i%�g��M − �L3 + 5 − �6�� + )�M − 1eK 

.= >?JXdYZL_`�i%�M − �L3 − 6��M − 1eK 

.= >?,7�3, 6���. 

.G4H34 , ����I = G�3, =�                                                                                                                                   (2.5) 

Precautionary Loss Function 

Norstrom (1996), introduced an alternative asymmetric precautionary loss function and also presented a general 

class of precautionary loss functions, with quadratic loss function as a special case (Srivastava, et al. (2004)). A very useful 

and simple asymmetric precautionary loss function is given as, 

L(j\, j) = 
�kl–k� 

kl  

For Precautionary Loss function, we find Risk function  

.G4H34 , ����I = >?J7�34, �����K 

.G4H34 , ����I = >? n^_`
a�b���c 
_`a o 

.= >? ]L_`gh��i%�g��M _`gh f 

.= >? ]L_`gh�	i%���M _`gh f 

.= >? ]L_`�	i%�M _`gh f 

.= >?,7�3, 6���. 
G4H34 , ����I = G�3, =�                                                                                                                                    (2.6) 

Entropy Loss Function 

Calabria and Pulcini (1994), proposed another alternative to the modified Linex loss function, named general 

entropy loss function and defined it as, 

7p�j, d) = ( 
q
k�r − s ln	� qk	� − 1	; 	s > 0	 

which has a minimum at d = j. This loss is a generalization of the entropy loss function, used by several authors 

taking the shape parameter p = 1.  
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For Entropy Loss function, the risk function is 

.G4 t _`a
b���u = >? v7 t _`a

b���uw 

.= >? vt _`a
b���u

r − s6� t _`a
b���u − 1w 

Put p=1 the risk function is given by  

.= >? vt _`a
b���u − 6� t _`a

b���u − 1w 

.= >? ]	 _`gh
i%�g�� − 6� 	 _`gh

i%�g�� − 1f 
.= >? ]7 	 _`gh

i%�g��f 

.G4 t _`a
b���u = G 	 _`gh

i%�g��                                                                                                                                          (2.7) 

CASE II 

Under the SELF, the problem of estimating ( )H α  is equivalent to that of estimating log α , when β  is known 

i.e. 0β β=  (say) 

For an estimator 3-of log α corresponding estimator of entropy H (α), is given by 

.3-4=6@A�! − 6@A3- + 
_ + 1 

.3-4=	−6@A3- + 6@A�! + 
_ + 1 

.3-4=	5 − 6@A3- + 
_  where	5 =	 6@A�! + 1 

.3-4=	−6@A3- + 	5 +	 _  
Squared Error Loss Function (SELF) 

The squared error, loss function is defined as 

L (j\, j) = �j\– j�- 

The Bayes estimator, under the above loss function, say j\	is the posterior mean, i.e. j\x = >y(j). 

The risk function is given by:- 

R{(θ\) = E}�θ\�- − 2θE}Hθ\I + θ-  

Now, we will estimate the log� using SELF 

Estimation of log	� under SELF, is defined as  

.7�3-, log�� = �3- − log��- 
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Risk function of an estimator 3-of log	�, will be denoted by 

 R(3-, =)= >?,7�3-, log��., where Q = (α, β), but in this case � = �! (known). 

Next, we find the Risk function and a bias function of the corresponding estimator 

.G4H3-4 , ����I = >?J7�3-4, �����K- 

.= >?J3-4 − ����K- 

.= >? ]−6@A3- + 
_ + 	5 − ^� − 6@A� + )cf-where	) = 6@A� + 1and 	5 =	 6@A�! + 1 

.= >? ]−6@A3- + 
_ + 	5 + 6@A� − 

� − )f- 

.G4H3-4 , ����I= >? ]−6@A3- + 
_ + 	5 + 6@A� − 

� − )f- 

Ignoring the constant term 

.G4H3-4 , ����I= >? ]−6@A3- + 
_ + 6@A� − 

�f
-
                                                                                                (2.8) 

4.3. SOME RESULTS 

We prove some important results, which are helpful in further advancing the estimation of entropy.

 

Theorem: Sample mean is consistent estimator ofδ , and ��3� is a continuous function of δ , then, ���̅�is a consistent 

estimator of	��3�. 
Proof: →Since x is a consistent estimator of δ , 

p

x δ→ x as n → ∞  

For every, 5 > 0, � > 0	∃	a positive integer n >m�5, �� 
PL|x� − δ| < 5M > 1 − �	∀	n ≥ m                                                                                                                         (3.1) 

Since, ��. � is a continuous function, for every 5 > 0, however small, ∃ a positive number 5such that, 

|���̅� − ��3�| < 5	whenever	|�̅ − 3| < 5 

i.e|�̅ − 3| < 5 ⇒ |���̅� − ��3�| < 5                                                                                                                  (3.2) 

For two events A and B, if A⇒B then, 

.� ⊆ 	N 

.���� 	≤ 	��N� 

.��N� 	≥ 	���� 
From equations (4.3.1) and (4.3.2) we have, 
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.��|���̅� − ��3�| < 5� ≥ ��|�̅ − 3| < 5� 

.��|���̅� − ��3�| < 5� ≥ 1 − �	∀	� ≥ � 

.���̅� → ��3�, as n → ∞ 

.���̅�	is a consistent estimator. 

Theorem: 34	is an unbiased estimator of log  �. 

Proof: When β is unknown and α  is known, that is 0α α= say 

From equation (4.2.1), we have 

.34 = 3 − 6��! + 
�/ + 1 

..34 = 3 + 5 

Taking the expectation on both sides, we get 

.>H34I = >�3 + 5� 

.>H34I = >�3� + 5 

.>H34I = 6@A� + 5 

.>H34I = 6@A� 

4.4 GRAPHICAL REPRESENTATION FOR ENTROPY OF PARETO DISTRIBUTION FOR FIXED 

VALUE OF ALPHA & BETA  

 

Graph 1: Graph between Entropy and Parameter Alfa 
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Graph 2: Graph between entropy and Parameter Beta 

4.5. CONCLUSIONS 

In this paper, we have derived the entropy of the Pareto distribution, for two parameters. Also, we have computed 

the various estimates and their biases, and risk functions associated with different loss functions.  
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